Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.
نویسندگان
چکیده
Surface-enhanced Raman scattering (SERS) has been considered as a promising sensing technique to detect low-level analytes. However, its practical application was hindered owing to the lack of uniform SERS substrates for ultrasensitive and reproducible assay. Herein, inspired by the natural cactus structure, we developed a cactus-like 3D nanostructure with uniform and high-density hotspots for highly efficient SERS sensing by both grafting the silicon nanoneedles onto Ag dendrites and subsequent decoration with Ag nanoparticles. The hierarchical scaffolds and high-density hotspots throughout the whole substrate result in great amplification of SERS signal. A high Raman enhancement factor of crystal violet up to 6.6 × 10(7) was achieved. Using malachite green (MG) as a model target, the fabricated SERS substrates exhibited good reproducibility (RSD ∼ 9.3%) and pushed the detection limit down to 10(-13) M with a wide linear range of 10(-12) M to 10(-7) M. Excellent selectivity was also demonstrated by facilely distinguishing MG from its derivative, some organics, and coexistent metal ions. Finally, the practicality and reliability of the 3D SERS substrates were confirmed by the quantitative analysis of spiked MG in environmental water with high recoveries (91.2% to 109.6%). By virtue of the excellent performance (good reproducibility, high sensitivity, and selectivity), the cactus-like 3D SERS substrate has great potential to become a versatile sensing platform in environmental monitoring, food safety, and medical diagnostics.
منابع مشابه
Ultrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles.
Low-cost, stabilized and ultrasensitive three-dimensional (3D) hierarchical surface-enhanced Raman scattering substrates ("sunflower-like" nanoarrays decorated with Ag nanoparticles, denoted as SLNAs-Ag) have been obtained by fabricating binary colloidal crystals and then decorating with Ag nanoparticles. In order to provide a larger density of hot spots within the laser-illumination area, the ...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملHeteroepitaxial decoration of Ag nanoparticles on Si nanowires: a case study on Raman scattering and mapping.
Metallic nanoparticle-decorated silicon nanowires showed considerable promise in a wide range of applications such as photocatalytic conversion, surface-enhanced Raman scattering, and surface plasmonics. However there is still insufficient amount of Raman scattering in Si nanowires with such decoration. Here we report the heteroepitaxial growth of Ag nanoparticles on Si nanowires by a surface r...
متن کامل3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms
In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/o...
متن کاملFabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate
Surface-enhanced Raman scattering (SERS) has recently been investigated extensively for chemical and biomolecular sensing. Multilayer silver (Ag) nanofilms deposited on glass slides by a simple electroless deposition process have been fabricated as active substrates (Ag/GL substrates) for arsenate SERS sensing. The nanostructures and layer characteristics of the multilayer Ag films could be tun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 87 20 شماره
صفحات -
تاریخ انتشار 2015